Ciencia y Tecnología
Aunque los agujeros negros sean siempre negros, de vez en cuando emiten algunas ráfagas intensas de luz desde el exterior de su horizonte de sucesos. Hasta ahora, la causa exacta de estas llamaradas era un misterio para la ciencia.
Este misterio ha sido resuelto recientemente por un equipo de investigadores que ha utilizado una serie de superordenadores para modelar los detalles de los campos magnéticos de los agujeros negros con mucho más detalle que cualquier otro esfuerzo anterior. Las simulaciones apuntan a la ruptura y reconstrucción de campos magnéticos superfuertes como fuente de las llamaradas superbrillantes.
Los científicos saben desde hace tiempo que los agujeros negros tienen potentes campos magnéticos a su alrededor. Normalmente, estos son sólo una parte de una compleja danza de fuerzas, materiales y otros fenómenos que existen alrededor de un agujero negro.
Tos, fiebre, dolores de cabeza... También los dinosaurios sufrían infecciones respiratorias similares a las que afectan a las aves actuales, según revela un estudio del registro fósil de un ejemplar de 150 millones de años.
El científico jefe del grupo de investigación de la empresa de desarrollo de inteligencia artificial OpenAI, Ilya Sustskever, publicó este jueves en su cuenta de Twitter que "puede ser que las grandes redes neuronales de hoy sean ligeramente conscientes".
Por primera vez, los investigadores han encontrado una forma rentable y cómoda de aplicar un recubrimiento transparente antimicrobiano a base de plata a tejidos nuevos o ya existentes. Su método utiliza polifenoles, que se encuentran habitualmente en alimentos que manchan la ropa, como el vino y el chocolate. El método de los investigadores permite tratar diversos tipos de textiles y los artículos pueden lavarse varias veces sin perder la propiedad antimicrobiana y, por tanto, antiolor.

Recubrimiento Ag/TA. A pesar de su capacidad para neutralizar patógenos, los polifenoles y la plata se consideran extremadamente seguros. Los polifenoles están en muchos tipos de alimentos que se consumen a diario, y la plata no interactúa con el cuerpo humano. Por tanto, el recubrimiento con Ag/TA podría ser realizado por cualquier persona, no sólo en entornos industriales estrictamente controlados.
Un equipo dirigido por investigadores de la Escuela de Ingeniería de la Universidad de Tokio ha sido pionero en la aplicación de un revestimiento de plata antimicrobiano a los textiles, que es rentable, sencillo y tiene también algunas implicaciones útiles. En esencia, han utilizado un compuesto conocido como polifenol, concretamente el ácido tánico (AT), para unir la plata (Ag) a los tejidos. Los polifenoles se encuentran en el chocolate y el vino tinto, entre otras cosas, y son los responsables de su infame capacidad para manchar la ropa y los manteles. Afortunadamente, el recubrimiento de los investigadores, llamado Ag/TA, es completamente transparente, por lo que no decolora los tejidos, pero lo mejor de todo es que puede sobrevivir a los lavados.
¿Alguna vez has sentido que no hay suficiente tiempo en el día? Resulta que podrías estar en lo cierto. La Tierra está girando más rápido que en el último medio siglo, lo que hace que nuestros días sean ligeramente más cortos de lo que estamos acostumbrados. Y aunque se trata de una diferencia infinitesimal, se ha convertido en un gran dolor de cabeza para físicos, programadores informáticos e incluso corredores de bolsa.
Por qué gira la Tierra
Nuestro sistema solar se formó hace unos 4.500 millones de años, cuando una densa nube de polvo y gas interestelar colapsó sobre sí misma y comenzó a girar. Hay vestigios de este movimiento original en la rotación actual de nuestro planeta, gracias al momento angular, es decir, "la tendencia del cuerpo que gira a seguir girando hasta que algo intenta detenerlo", explica Peter Whibberley, investigador principal del Laboratorio Nacional de Física del Reino Unido.
Gracias a ese momento angular, nuestro planeta lleva miles de millones de años girando y experimentamos la noche y el día. Pero no siempre ha girado a la misma velocidad.
Hace cientos de millones de años, la Tierra realizaba unas 420 rotaciones en el tiempo que tardaba en orbitar el Sol; podemos ver pruebas de cómo cada año estaba repleto de días extra examinando las líneas de crecimiento de los corales fósiles. Aunque los días se han ido alargando gradualmente con el tiempo (en parte debido a la forma en que la luna tira de los océanos de la Tierra, lo que nos ralentiza un poco), durante la época de la humanidad, nos hemos mantenido estables en unas 24 horas para una rotación completa, lo que se traduce en unas 365 rotaciones por viaje alrededor del Sol.
Sin embargo, a medida que los científicos han ido mejorando la observación de la rotación de la Tierra y el seguimiento del tiempo, se han dado cuenta de que experimentamos pequeñas fluctuaciones en el tiempo que tardamos en realizar una rotación completa.

Impresión artística de la enana blanca G29-38, que acumula material planetario procedente de un disco de desechos circunestelares.
Una masa de rocas plutónicas del tamaño de una montaña y oculta debajo de la corteza terrestre, cerca de la línea costera de la isla Honshu (la más grande del archipiélago de Japón), amplifica la intensidad de los terremotos en la región, según comunicó este lunes un equipo de investigadores liderado por el geofísico Adrien Arnulf, de la Universidad de Texas.
Según un nuevo estudio realizado por investigadores de The Australian National University (ANU), las gigantescas cadenas montañosas, tan altas como el Himalaya y que se extienden hasta 8.000 kilómetros a través de supercontinentes enteros, desempeñaron un papel crucial en la evolución de la vida primitiva en la Tierra.

La rápida erosión de las supermontañas liberó grandes cantidades de nutrientes, que acabaron llegando a los océanos.
El estudio descubrió que la más gigantesca de estas supermontañas sólo se formó dos veces en la historia de la Tierra: la primera entre 2.000 y 1.800 millones de años y la segunda entre 650 y 500 millones de años. Ambas cordilleras se levantaron durante períodos de formación de supercontinentes.
La autora principal, Ziyi Zhu, candidata al doctorado en la ANU, dijo que existen vínculos entre estos dos casos de supermontañas y los dos períodos más importantes de la evolución en la historia de la Tierra.

Agujero negro situado en el cúmulo estelar NGC 1850, en la constelación de Dorado. Folleto publicado el 11 de noviembre de 2021.
Un equipo internacional de astrónomos dirigido por el investigador Toni Santana-Ros, de la Universidad de Alicante, el Instituto de Ciencias del Cosmos de la Universidad de Barcelona (ICCUB) y el Instituto de Estudios Espaciales de Cataluña (IEEC), ha confirmado la existencia del segundo asteroide troyano terrestre conocido hasta la fecha, el 2020 XL5, tras una década de búsqueda. Los resultados del estudio se han publicado hoy, 1 de febrero, en la revista Nature Communications.
Todos los objetos celestes que vagan por nuestro sistema solar sienten la influencia gravitatoria de todos los demás cuerpos masivos que lo componen, incluidos el Sol y los planetas. Si consideramos sólo el sistema Tierra-Sol, las leyes de la gravedad de Newton establecen que hay cinco puntos en los que todas las fuerzas que actúan sobre un objeto situado en ese punto se anulan entre sí. Estas regiones se denominan puntos de Lagrange (puntos L o puntos de libración) y son zonas de gran estabilidad. Los asteroides troyanos terrestres son pequeños cuerpos que orbitan alrededor de los puntos de libración L4 o L5 del sistema Sol-Tierra.
Estos resultados confirman que 2020 XL5 es el segundo asteroide troyano terrestre transitorio conocido hasta la fecha, y todo indica que seguirá siendo troyano (es decir, se situará en el punto de Lagrange) durante cuatro mil años, por lo que se le califica de transitorio. Los investigadores han proporcionado una estimación del tamaño del volumen del objeto (alrededor de un kilómetro de diámetro, mayor que el asteroide troyano terrestre conocido hasta la fecha, el TK7 de 2010, que tenía 0,3 kilómetros de diámetro), y han hecho un estudio del impulso que necesita un cohete para alcanzar al asteroide desde la Tierra.