Ciencia y Tecnología
Expertos de la Universidad Northwestern de Illinois, Estados Unidos, realizaron un estudio que apareció publicado en la revista científica Nature, y en el que buscaron dar con las razones que explican este fenómeno que rompe con la teoría estándar sobre la formación planetaria.
De acuerdo con esta teoría, un planeta debe girar en la misma dirección de su estrella, tal y como sucede en nuestro sistema solar.
"Es algo muy extraño, y es aún más raro porque el planeta está muy cerca de la estrella", dijo Frederic Rasio, astrofísico de la Universidad Northwestern.

Anillos planetarios ondulados por obra de colisiones cometarias.
Los científicos de la Cassini notaron por primera vez ondas espirales en una franja de 2.000 kilómetros de ancho del anillo D de Saturno, el más cercano al planeta, en 2005. En 2009, los astrónomos identificaron ondulaciones más extensas que cubren todo el anillo C, de 17.000 kilómetros de ancho, y comenzaron a buscar pistas de su origen.
Comparando los datos obtenidos en 2005 con los reunidos en 2009, un equipo formado por especialistas de la Universidad de Cornell y el Instituto SETI, ambas instituciones en Estados Unidos, ha conseguido describir cómo cambiaron las ondas.
Matt Hedman, Joseph A. Burns y sus colegas han llegado a la conclusión de que la rara ondulación descubierta se podría explicar si todo el anillo se hubiera inclinado en algún momento del pasado, concretamente, según sus cálculos, en el invierno de 1983.
Continuar leyendo aquí.

Se podría sugerir que tanto la Tierra como su luna pudieron tener océanos de magma hace miles de millones de años.
El hallazgo es la primera confirmación directa de que es el objeto con mayor actividad volcánica conocido en el Sistema Solar, informó el Laboratorio de Propulsión a Chorro de la NASA (JPL, por sus siglas en inglés).
Los resultados de la investigación dirigida por científicos de las universidades de California, en Los Ángeles y Santa Cruz, y la de Michigan, se publicaron en la revista científica Science.
"Los científicos estamos realmente emocionados porque finalmente entendemos de dónde viene el magma de Io y tenemos una explicación de una de las mayores incógnitas sobre el campo magnético que había detectado la nave Galileo. Esto demostró que Io continúa dándonos señales de los cambios en la rotación del campo magnético de Júpiter que corresponde con lo que esperábamos de encontrar rocas molidas o parcialmente molidas en el subsuelo de la luna", dijo Krishan Khurana, líder de la investigación y miembro del equipo de la misión Galileo.
La imagen de las cámaras de Dawn fue tomada el 3 de mayo cuando la nave comenzó su enfoque y estaba a unos 1,21 millones de kilómetros de Vesta. El asteroide aparece como una pequeña perla brillante contra un fondo de estrellas. Vesta también es conocido como un protoplaneta, porque es un gran cuerpo que casi puede considerarse un planeta.
Después de navegar mil millones de millas por el espacio finalmente el equipo que dirige la nave desde la Tierra vio su objetivo", dijo Carol Raymond, investigador principal de Dawn en el Jet Propulsion Laboratory (JPL) en Pasadena, California. "Es la primera imagen detallada de los retratos que se recibirán de la próxima visita de Dawn.Vesta tiene 530 kilómetros de diámetro y es el segundo objeto más masivo del cinturón de asteroides. Desde la Tierra y los telescopios en el espacio se han obtenido imágenes de esta esfera brillante desde hace unos dos siglos, pero con poco detalle de la superficie.
Los directores de la misión esperan que la gravedad de Vesta capture a Dawn en órbita el 16 de julio. Para entrar en órbita, Dawn debe coincidir con la trayectoria del asteroide alrededor del Sol, lo que requiere un conocimiento muy preciso de la ubicación del cuerpo y de su velocidad. Mediante el análisis de la imagen tomada en relación a las estrellas puede afinarse la posición y la trayectoria exacta.
Herschel ha detectado vientos de una magnitud extraordinaria; los más rápidos soplan a una velocidad de más de 1000 km/s, lo que viene a ser unas 10 000 veces más rápido que los huracanes terrestres.
Esta es la primera vez que se observa este fenómeno de forma inequívoca en una serie de galaxias. Es un descubrimiento de gran importancia, ya que las estrellas se forman a partir del gas y el polvo interestelar, por lo que estas corrientes están despojando a las galaxias de la materia prima que necesitan para formar nuevas estrellas. Estos vientos podrían alcanzar la magnitud suficiente como para detener por completo la evolución de aquellas estrellas que se encuentran en pleno proceso de formación.
"Gracias a Herschel, por fin tenemos la oportunidad de estudiar qué papel juegan realmente estas corrientes de gas en la evolución de las galaxias", comenta Eckhard Sturm del Instituto Max-Planck de Física Extraterrestre en Alemania, autor principal del artículo que presenta este descubrimiento.
El doctor Sturm y su equipo utilizaron el instrumento PACS (Photoconductor Array Camera and Spectrometer) a bordo de Herschel para estudiar una serie de 50 galaxias. Esta primera publicación presenta los resultados de la observación de seis de ellas.
La expedición NEEMO de este año, que incluirá el complemento habitual de astronautas e ingenieros, está programada en el fondo marino para octubre. Dado que esta es la primera misión para simular un viaje a un asteroide, hay mucho trabajo por hacer antes de que la misión pueda comenzar.
Para prepararse, los ingenieros han viajado al Laboratorio Submarino Acuario, cerca de Key Largo, Florida, propiedad de la Administración Nacional Oceánica y Atmosférica (NOAA), para trabajar en algunos de los conceptos que se pondrá a prueba en el otoño.
"Incluso los expertos no saben si la superficie de un asteroide va a ser asi", dijo el gerente de Proyecto NEEMO, Bill Todd. "Puede haber asteroides que ni siquiera sepamos de su existencia y que se van a visitar. Así que estamos averiguando la mejor manera de hacerlo."
Su precio entonces, dejando aparte los costes de lanzamiento, no deberá sobrepasar los 425 millones de dólares. Los contratos de 3 millones de dólares otorgados ahora a los candidatos servirán para reducir el riesgo y definir mejor el concepto alrededor del cual gravitarán.
Esta ronda de propuestas se solicitó en junio de 2010. La NASA recibió y revisó 28, siendo tres las que han recibido el favor de los ingenieros y de la dirección de la agencia, que quiere profundizar en sus características.
Continuar leyendo
El asteroide llamó primero la atención de estos científicos, Apostolos "Tolis" Christou y David Asher, dos meses después de haber sido encontrado por el satélite infrarrojo WISE. "Su distancia media al Sol es idéntica a la de la Tierra", dice el Dr. Christou, "pero lo que realmente me impresionó lo similar que su órbita era a la de la Tierra".
La mayoría de asteroides cercanos a la Tierra tienen órbitas muy excéntricas, en forma de huevo, y recorren órbitas en el sistema solar interuir. Pero el nuevo objeto, denominado 2010 SO16, es diferente. Su órbita es casi circular, de modo que no puede acercarse a cualquier otro planeta del sistema solar, excepto la Tierra".
Los investigadores se propusieron investigar la estabilidad de esta órbita y durante cuánto tiempo venía siendo ocupada por el asteroide. Para ello, primero tuvieron que tener en cuenta la incertidumbre actual en la órbita del asteroide. "No saber con precisión la ubicación de un objeto próximo a la Tierra recién descubierto es bastante común", explicó el doctor Asher.
Concretamente, los resultados arrojaron que las personas distraídas suelen tener un mayor volumen de materia gris en esa región cerebral. Es decir, tienen más densidad de neuronas en una de las áreas que, precisamente, se utiliza en la acción de prestar atención a una tarea.
Por eso los autores reconocen que el descubrimiento es contraintuitivo, ya que tener más células grises debería suponer un mejor resultado a la hora de mantener la concentración, pero la realidad demuestra que ocurre todo lo contrario.
"Es un poco chocante que la capacidad de esta región sea peor cuando su tamaño es mayor", reconoce a elmundo.es el investigador Ryota Kanai, neurocientífico del University College de Londres y principal firmante de la investigación, publicada en The Journal of Neuroscience.